Genus 3 covers of elliptic curves

Davide Lombardo, Elisa Lorenzo-García, Jeroen Sijsling

28 March 2017

Genus 3 covers

28 March 2017 1 / 9

$$C \xrightarrow{d-to-1} E$$

with C of genus 3 and E an elliptic curve

Image: Image:

$$C \xrightarrow{d-to-1} E$$

with C of genus 3 and E an elliptic curve (everything defined over $\overline{\mathbb{Q}}$)

$$C \xrightarrow{d-to-1} E$$

with C of genus 3 and E an elliptic curve (everything defined over $\overline{\mathbb{Q}}$) Up to isogeny, we have either

• Jac(
$$C$$
) ~ $E \times E_2 \times E_3$, or

$$C \xrightarrow{d-to-1} E$$

with C of genus 3 and E an elliptic curve (everything defined over $\overline{\mathbb{Q}}$) Up to isogeny, we have either

• Jac(
$$C$$
) ~ $E \times E_2 \times E_3$, or

2 $\operatorname{Jac}(C) \sim E \times \operatorname{Jac}(X)$ with X of genus 2

• Decide in which case we are

• • • • • • • •

æ

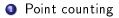
- Decide in which case we are
- Find E_2, E_3 or X.

- I A P

- Decide in which case we are
- Find E_2, E_3 or X.

Remark

Finding E_2, E_3 is as hard as finding E, and we know how to do that.



- Oint counting
- 2 Endomorphism verification

- Oint counting
- 2 Endomorphism verification
- O Prym-like varieties

Suppose

$$C: y^4 - h(x,z)y^2 + f(x,z)g(x,z) = 0$$

Suppose

$$C: y^4 - h(x,z)y^2 + f(x,z)g(x,z) = 0$$

and

$$E: y^2 - h(x,z)y + f(x,z)g(x,z) = 0.$$

Suppose

$$C: y^4 - h(x,z)y^2 + f(x,z)g(x,z) = 0$$

and

$$E: y^2 - h(x, z)y + f(x, z)g(x, z) = 0.$$

If $\operatorname{Aut}(C) = \mathbb{Z}/2\mathbb{Z}$ one can explicitly write down a genus 2 curve X such that $\operatorname{Jac}(C) \sim E \times \operatorname{Jac}(X)$.

Suppose

$$C: y^4 - h(x,z)y^2 + f(x,z)g(x,z) = 0$$

and

$$E: y^2 - h(x, z)y + f(x, z)g(x, z) = 0.$$

If $\operatorname{Aut}(C) = \mathbb{Z}/2\mathbb{Z}$ one can explicitly write down a genus 2 curve X such that $\operatorname{Jac}(C) \sim E \times \operatorname{Jac}(X)$. X is defined over the same field as C.

• Suppose $C \to E$ is Galois with "large" automorphism group – i.e. D_4, Q_8, S_3 . Then Jac(C) is the product of three elliptic curves.

- Suppose $C \to E$ is Galois with "large" automorphism group i.e. D_4, Q_8, S_3 . Then Jac(C) is the product of three elliptic curves.
- $\bullet\,$ This is not necessarily the case if the automorphism group of the covering is $\mathbb{Z}/2\mathbb{Z}$

- Suppose $C \to E$ is Galois with "large" automorphism group i.e. D_4, Q_8, S_3 . Then Jac(C) is the product of three elliptic curves.
- $\bullet\,$ This is not necessarily the case if the automorphism group of the covering is $\mathbb{Z}/2\mathbb{Z}$
- \bullet When the group is $\mathbb{Z}/3\mathbb{Z},$ the abelian surface has QM

The elliptic curve E is canonically an abelian subvariety of Jac(C).

The elliptic curve E is canonically an abelian subvariety of Jac(C). There is a canonical abelian surface $\iota_A : A \hookrightarrow Jac(C)$ such that $A \times E \to Jac(C)$ is an isogeny.

The elliptic curve E is canonically an abelian subvariety of Jac(C). There is a canonical abelian surface $\iota_A : A \hookrightarrow Jac(C)$ such that $A \times E \to Jac(C)$ is an isogeny.

Question

Let Θ be the theta divisor of Jac(C). What is the degree of the polarization $\iota_A^* \Theta$?

Partial answer	
There is a	d-isogeny $A ightarrow A'$ with A' principally polarized

• • • • • • • •

Partial answer

There is a d-isogeny $A \rightarrow A'$ with A' principally polarized (hence a Jacobian or a product of two elliptic curves).

Partial answer

There is a (non-canonical!) *d*-isogeny $A \rightarrow A'$ with A' principally polarized (hence a Jacobian or a product of two elliptic curves).

Partial answer

There is a (non-canonical!) *d*-isogeny $A \rightarrow A'$ with A' principally polarized (hence a Jacobian or a product of two elliptic curves).

Question

Is the isogeny defined over the same field as $C \rightarrow E$?

• From $C \rightarrow E$ determine a period matrix of C, hence of A

- From $C \rightarrow E$ determine a period matrix of C, hence of A
- Determine an isogeny $A \rightarrow A'$ with A' principally polarized

- From $C \rightarrow E$ determine a period matrix of C, hence of A
- Determine an isogeny $A \rightarrow A'$ with A' principally polarized
- Write down the period matrix of A' = Jac(X)

- From $C \rightarrow E$ determine a period matrix of C, hence of A
- Determine an isogeny $A \rightarrow A'$ with A' principally polarized
- Write down the period matrix of A' = Jac(X)
- Reconstruct X from A' (Guàrdia)